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A scheme is described for calculating explosive-driven magnetic generators, and analytical
and numerical calculations are made of the problem of switching a generator on to a constant
ohmic and induction load, to a load whose resistance rises linearly with the temperature, and
to a plasma load with equilibrium radiation. In the latter case, a calculation is made of a
variant involving switching on the load through a matched transformer.

1. The use of the energy of explosives for the rapid constriction of the magnetic flux inside a conduct-
ing circuit [1] has been put into practice in a number of constructions of explosive-driven magnetic genera-
tors [1-7], which are the most powerful generators of an electric current. An explosive-driven magnetic
generator has specific electrotechnical characteristics which must be taken into account in matching it with
various types of loads.

The present article discusses some calculating relationships, obtained for a plane [4], explosive-
driven magnetic generator with a load of an inductive and active character. A closely allied construction
of a generator was developed by Herlach and Knoepfel [5]. A plane generator (Fig. 1) consists of copper
busbars (1) of varying width, a welded copper holder (2) located between the busbars, and a charge of ex-
plosive (3), filled into the internal hollow of the holder. The generator is connected by cables (5) with a con-
denser battery. At the moment when the discharge current attains a maximum, the percussion cap (4) is
detonated, and a detonation wave is propagated along the charge of explosive. Under the action of the prod-
ucts of the explosion, the side walls of the holder are scattered to the sides, short-circuiting the busbars
of the generator and gradually forcing the magnetic flux into the load (6). The work of explosive-driven
magnetic generators is discussed in more detail in Knoepfel's book [8].

2. From an electrotechnical point of view, an explosive-driven generator is part of a circuit with a
variable inductance L¢). We postulate that the busbars of the generator are parallel, that their width 2y
varies slowly along the length of the generator, x, and that the distance between the busbars, 2b, is much
less than the width. Denoting the total length of the generator by I, and assuming that the rate of short-cir-
cuiting of the plates is constant and equal to the rate of detonation, D, we can write the dependence of the
inductance of the generator on time
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The origin of coordinates is located at the point of the connection between the generator and the load;
the time is reckoned from the moment of short-circuiting of the generator by the explosion.

With a change in the inductance, the power developed by such a generator is equal to 2™ 1¢ 22D (dL/dx).
On the other hand, it is equal to some fraction k of the power 4qyd D, developed with the explosion of the
charge of explosive. Thus, we can write

Novosibirsk. Translated from Zhurnal Prikladnoi Mekhanika i Tekhnicheskoi Fiziki, No. 2, pp. 37~
41, March-April, 1973. Original article submitted October 25, 1972.

© 1975 Plenum Publishing Corporation, 227 West 17th Street, New York, N.Y. 10011. No part of this publication may be reproduced,
stored in a retrieval system, or transmitted, in any form or by any means, electronic, mechanical, photocopying, microfilming,
recording or otherwise, without written permission of the publisher. A copy of this article is available from the publisher for $15.00.

176



nb I?
= kqyb : (2.2)

Here I is the current in the generator; q is the energy of the explosive per unit volume; 26 is the thick-
ness of the layer of explosive; ¢ is an electrodynamic constant.

In any given cross section of the generator, the coefficient k cannot exceed some maximal value, de-
termined by the charge of explosive, the current, and the construction of the generator. A generator will
work under optimal conditions if k attains this value everywhere, i.e., if it is constant along the length of
the generator.

Together with conditions (2.1) and (2.2), writing the energy equation for the electrical circuit and the
equations determining the resistance and the other electrotechnical parameters, we can obtain a closed sys-
tem of equations, from which there are determined the cut of the busbars of the generators, y(x),the depen-
dences of the current and the energy developed in the load on the time, and other characteristics of the gen-
erator.

3. For a circuit with an inductance of the load Ly, having a resistance R, with k= const the energy
equation has the form
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The initial inductance Ly=1L(0) +1,.

The problem of switching an explosive-driven generator on to a constant resistance R=R,, is solved
analytically. The cut of the busbars of the corresponding generator is

y(r)~yoeXP[ 7.0 (l—l-x)(f,ig, —~1)J (o =y (—D) 8.2

Here y,; is the width of the busbars at the start of the generator.

Sometimes a generator works only on an inductive load. The corresponding cut of the busbars is ob-
tained by passing to the limit in (3.2), Ry—~ 0. This case corresponds to the generator discussed in [4], in
which the exponent is approximated by straight segments.

There exists a critical value of the resistance
= 4 abD / ?y,

at which the width of the busbars and the current of the generator are constant. With Ry< R, the width of
the busbars and the current of the generator increase, while with Ry> R, they decrease. These conditions
involve a strong loss of magnetic flux and, in many cases, are unsatisfactory.

The energy E developed in an ohmic load after the working time of the generator, referred to the ini-
tial energy of the magnetic field in the generator, Ey= Lyl3/2 c?, is equal to
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The maximal value of E/E; as a function of p with a given arbitrary coefficient of retuning of the gen-
erator n is equal to (n+1)%4n and is attained at p = (n+1)/(n—1)2. In this case, the current rises by (n—1)/2
times.

In the case p =1, the current is constant, and the energy in the load, E=2E;(1—1/n), exceeds the ini~
tial reserve of energy in the generator by approximately two times.

For the most important case of generators with n>1
E=Eyp(1+p)n/(l +on)? @.3)
and a maximal energy is attained in the load

R, = nR, 8.4)
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For the energy of the explosive charge, we have
0 R
y oy
Q=48 \ y@dz — C By~ 5 By

-1

The ratio of the maximal energy in the load (3.3), under condition (3.4), to the total energy of the
charge of explosive is equal to

ElQ,=Fkl2

Thus, with n>1, half of the energy developed by the generator goes into heat, while the second half
remains in the form of the energy of the magnetic field, connected with the residual inductance of the gen-
erator.

4. The case of a resistance R(t) varying with the heating is more complicated. Assuming that the
change in the resistance is proportional to the change in the temperature, we obtain
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where « is the temperature coefficient of the resistance; A is the total heat capacity of the resistor; R, is
the initial value of the resistance.

The system of equations @.1), 2.2), (3.1), ¢&.1) was solved numerically in an electronic computer us-
ing a Runge~Kutta program with automatic selection of the spacing. In dimensionless form, the solution
depends on the parameters
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The results of a calculation of the dependences L/Ly, I/I;, and R/R; on the dimensionless time 7=
¢®RyIs't with A;=10%, A,=5-1072, are given in Fig. 2. The value of the current, calculated from condition
(2.2), may be used to determine the width of the busbars and to design an optimal generator for a given case.

With a given value of n in a load whose resistance rises with time, more energy can be developed than
in the case of a constant resistance. A variable width of the busbars increases the efficiency of the utiliza-
tion of the energy of the explosion, compared to a generator with a constant width, discussed in [9].

For the efficient heating of a load with a large resistance, a matching transformer must be connected
between the generator and the load. The optimal transformation coefficient with respect to the current

m=1I/1I, “.2)
is to be determined.
As an example, we consider a plasma load whose resistance decreases with a rise in the temperature
R =Ry (T,/ T)" 4.3)
For a dense plasma radiating as a blackbody, the energy balance in the load has the form
AT — To) + lScT4Sdt= ! gmﬁdt “.4)
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where A is the total heat capacity of the plasma; S is the radiating surface; ¢ is the Stefan—Boltzmann con-
stant. The problem is determined by the dimensionless parameters
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The results of a numerical solution of the system (2.1), (2.2), (3.1), 4.2)~(4.4) for B;=0.3 m?, By=
0.5 m?, B;=8.5, n=20 and m=2, 8, 4, 7, are given in Fig. 3. The points show the energy yield for different
transformers.

With large values of the transformation coefficients, the current in the load is small; the plasma is
strongly cooled by radiation and, at the start, its resistance rises. In this case, the explosion makes an
appreciable energy contribution only at a rather high power, i.e., with rapid work of the generator. Since
the energy losses of a dense plasma depend strongly on the temperature (~T?%), in the case under consider-
ation the resistance of the plasma varies only slightly, i.e., by 2-2.5 times. The greatest amount of energy
is developed in the load when it is matched with the generator through a determined transformer. With a
rise in the value of m, the current in the load decreases and, along with it, the power of the heating. With
a small value of m, there is an increase in the effective resistance of the load in the primary circuit, which
leads to rapid relaxation of the magnetic flux. In the case under consideration, the optimal value of m=4.
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